A Gradient Based Algorithm for Blind Inversion of Wiener System Using Multi-variate Score Functions
نویسندگان
چکیده
A Wiener system is a linear time-invariant filter, followed by an invertible nonlinear distortion. Assuming that the input signal is an independent and identically distributed (iid) sequence, we propose an algorithm for estimating the input signal only by observing the output of the Wiener system. The algorithm is based on minimizing the mutual information of the output samples, by means of a steepest descent gradient approach.
منابع مشابه
Blind Inversion of Wiener System Using a Minimization-projection (mp) Approach
In this paper, a new algorithm for blind inversion of Wiener systems is presented. The algorithm is based on minimization of mutual information of the output samples. This minimization is done through a Minimization-Projection (MP) approach, using a nonparametric “gradient” of mutual information.
متن کاملQuasi-nonparametric blind inversion of Wiener systems
An e cient procedure for the blind inversion of a nonlinear Wiener system is proposed. We proved that the problem can be expressed as a problem of blind source separation in nonlinear mixtures, for which a solution has been recently proposed. Based on a quasi-nonparametric relative gradient descent, the proposed algorithm can perform e ciently even in the presence of hard distortions.
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملMutual information minimization: application to Blind Source Separation
In this paper, the problem of Blind Source Separation (BSS) through mutual information minimization is addressed. For mutual information minimization, multi-variate score functions are first introduced, which can be served to construct a non-parametric “gradient” for mutual information. Then, two general gradient based approaches for minimizing mutual information in a parametric model are prese...
متن کاملControlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کامل